

Advanced Coding

1.Problemstatement:

Given two non-negative integers n1 and n2, where n1 <n2. The task is to find the total

number of integers in the range interval [n1, n2] [both inclusive] which have no

repeated digits.

Fore.g.

Supposen1=11and n2=15.

There is the number 11,which has repeated digits, but 12, 13, 14,and 15have no repeated

digits. So, the output is 4.

Input Output

11--Valueofn1

15--Valueofn2

4

101--Valueofn1

200--Valueofn2

72

Code Solution in Java

CodeSolutionin C

2.Problemstatement:

GivenanarrayArr[]of NintegersandapositiveintegerK. The task

istocyclicallyrotatethearray clockwise by K.

Note:Keepthefirstpositionofthearray unaltered.

Example Input Output Explanation

Example1

5--ValueofN

{10,20,30,40,50}--

Elementsof Arr[]

2--ValueofK

4050102030

Arr[]={10,20,30,40,

50}andK =2 (Two

cyclical rotations)

After1strotation={1

0, 50, 20, 30, 40}

After2ndrotation={

10, 40, 50, 20, 30}

Example2

4--ValueofN

{10,20,30,40}--

ElementsofArr[] 1 -- Value

of K

40102030

Arr[]={10,20,30,40}

andK=1(Onecyclical

rotation)

After1strotation={1
0, 40, 20, 30}

Constraints

● 1<N<=100

● -100<=Arr[i]<=100

● 1<=K <=100

Inputformatfortesting

● Thecandidateshouldwritethecodetoaccept theinputs separated byanewline.

● FirstInput:Accepta singlepositiveinteger valueforNrepresenting thesizeof Arr[]

● SecondInput:AcceptNnumberofintegervaluesseparatedbyanewline,aselementsofArr[
]

● Thirdinput: AcceptasinglepositiveintegervalueforKrepresentingthenumber
ofrotations.

Outputformatfortesting

● TheoutputmustbeNintegernumbers separatedbyasinglespacecharacter.

● Additionalmessagesintheoutputwillresultinthefailureoftestcases.

Instructions

● Thesystemdoesnotallowanykindofhard-codedinputvalue/ values.

● The written program code by the candidate will be verified against the input

which are supplied from the system.

CodeSolutioninJava

CodeSolutionC

3. Given an array Arr[] of N integer numbers. The task is to rewrite the array by putting

all multiples of 10 at the end of the given array.

Note: The order of the numbers which are not multiples of 10 should remain unaltered,

and similarly, the order of all multiples of 10 should be unaltered.

For e.g.

Suppose N = 9 and Arr[]={10, 12, 5, 40, 30, 7, 50, 9, 10}

You have to push all multiple of 10 at the end of the

Arr[] Hence, the output is 12 5 7 9 10 40 30 50 10.

Input Output

9 …. Value of N

10 12 5 40 30 7 50 9 10 …
Elements of Arr[]

12 5 7 9 10 40 30

50 10

9 ….. Value of N

100 21 5 6 3 7 11 89 10….
Elements of Arr[]

21 5 6 3 7 11 89

100 10

Constraints:

1 < N < = 100

.100 < = Arr[i] < = 100

Input Format for Testing:

1. First input line: Accept a single positive integer value for N representing the size of
Arr[].

2. Second Input line: Accept N number of integer values separated by a new line.

Output Format for Testing:

1. The output must be N integer numbers separated by a single space

character (See the output format in examples).

2. Additional messages in the output will result in the failure of test cases.

Code Solution in Java

Code Solution in C

4. Given an array Arr[N] of N integers and a positive integer K. The task is to divide

the array into two sub-arrays from right after the Kth position and slide the left

sub-array of K elements to the end.

Input Output Explanation

5 -- Value of N

{10, 20, 30, 40, 50} --
Elements

of Arr []

2 -- Value of K

30 40 50 10
20

Arr[] = {10,20,30,40,50}
and K=2

(2nd position)

Divide array from after

2nd position and add

left sub-array

{10,20} to the end.

So the output is 30 40 50
10 20

4 -- Value of N

{10, 20, 30, 40} --

Elements of Arr []

1 -- Value of K

20 30 40 10

Arr[] = {10, 20, 30, 40} and
K=1

(1st position)

Divide array from after

1st position and add left

sub-array

{10} to the end.

So the output is 20 30 40
10

4 -- Value of N

{10, 20, 30, 40} --

Elements of Arr[]
3 -- Value of K

40 10 20 30

Arr[] = {10, 20, 30, 40} and
K=3

(3rd position)

Divide array from after

3rd position and add left

sub-array
{10, 20, 30} to the end.

So the output is 40 10 20
30

Constraints

● 1<N<=100

● -100<=Arr[i]<=100

● 1<=K<N

Code Solution in Java

Code Solution in C

5. For hiring a car, a travel agency charges R1 rupees per hour for the first N hours and

then R2 rupees per hour. Given the total time of travel in minutes is X. The task is to

find the total traveling cost in rupees.

Note: While converting minutes into hours, ceiling value should be considered as the

total number of hours.

For example: If the total travelling time is 90 minutes,

i.e. 1.5 hours, it must be considered as 2 hours.

Input Outp
ut

EXplanation

20 ---Value of R1

4 --- Value of N in

hours 40 --- Value of

R2

300 --- Value of X in
minutes

120

Total travelling hours =

300/60 = 5 hours

Rupees 20/hours for first 4
hours

= 20 * 4 = 80 rupees

Rupees 40/hours in 5th
hour = 40

* 1 = 40 rupees

Hence, the total travelling

cost = 80 + 40 = 120

rupees

30 --- Value of R1

5 --- Value of N in
hours.

35 --- Value of R2

500 -- Value of X in minutes

290

Total travelling hours =

500/60 = 8.33, Ceiling

value of 8.33 = 9 hours

Rupees 30/hours for first

5th hours = 30 * 5 = 150

rupees

Rupees 35/hours in 5th
hour = 35

* 4 = 140 rupees

Hence, the total travelling

cost = 150 + 140 = 290

rupees

30--- Value of R1

10--- Value of N in

hours 35 alue of

R2

5--- Value of X in minutes

30

Total travelling hours =

3/60 = 0.05, Ceiling

value of 0.05 = 1 hour

Rupees 30/hour for first 10
hours

= 30 * 1 = 30 rupees

Constraints:

1 < R1 < R32< 100

1 < = N < = 10

1 < = X < 10000

Code Solution in Java

Code Solution in C

6. There is a bag with three types of gemstones: Ruby of type R, Garnet of type g, and

Topaz of type T. Write a program to find the total number of possible arrangements to

make a series of gemstones where no two gemstones of the same type are adjacent to

each other.

Input Outp
ut

Explanation

1-Count of R i.e.

Ruby 1-Count of G

i.e. Garnet

0-Count of T i.e.

2

Arrangements are RG and
GR.

1-Count of R i.e.

Ruby 1-Count of G

i.e .Garnet 1-Count

of T i.e. Topaz

6 Arrangements are RGTR,

GRTR, RGRT, RTGR, RTRG

AND TRGR

Code Solution in C

Code Solution in Java

7.Problem Description:

You are given a sorted and infinite array A[] and an element K. You need to search
for the element K in the array. If found, return the index of the element, else return -
1.

For Example :

Input: A[] = {1,3,5,8,12,13,17,19,28,39,103,123,140,2040,…}, K = 17

Output: 6

Input: A[] = {10,20,25,30,67,93,159,192,350,1230,1341,4533,…}, K = 23

Output: -1

Ksible questions to ask the interviewer:-

• What is the meaning of infinite array ? (Ans : We don't know the upper bound

of the array)

• How big can the resultant index be? (Ans: Ignore the integer overflow

problem, we just want to check your logic, let us assume integer overflow

won’t occur)

Brute force and Efficient solutions

We will be discussing three solutions for this problem:-

1. Brute Force approach : Using linear Search

2. Increment by a constant value and using binary search

1. Brute Force approach: Using linear Search

In the infinite array, we don’t know the upper bound to apply the binary search. So
simple solution we could think to start searching for K linearly from index 0 until
you you find an element equal to K, then return the index. If you find an element
greater than K, then return -1.

Pseudo-Code
int search_infiniteArray(int A[], int K)
{
 int i = 0
 while (A[i] <= K)
 {
 if(A[i] == K)
 return i
 else
 i = i + 1
 }

 return -1
}
Complexity Analysis
Let i be the position of the element to be searched, then the time Complexity =
O(i) (Think)

Space Complexity: O(1)

Critical ideas to think!

• Since we know that the array is sorted, Can we use this info to improve the

time complexity?

2. Increment by a constant value and using binary search

If we can track the interval (with the lower and upper bound) where target value
reside then we can apply the binary search in that interval. Here we maintain the
interval size by constant value C.

Note: In a sorted array, if we check an element at any index j, we could logically
know the relative position of element K with respect to A[j].

Solution Steps

1. Initialize lower and upper index of the interval i.e. l = 0 , r = C

2. Compare the K with the value present at the upper index of the interval

• if K > A[r] then copy the upper index in the lower index and increase the upper

index by C. Keep on doing this until you reach a value that is greater than K.

• If K < A[r], apply binary search in the interval from l to r

3. If found, return the index else return -1.

Pseudo-Code
int search_infiniteArray(int A[], int K)
{
 int l = 0
 int r = C
 while (A[r] < K)
 {
 l = r
 r = r + C
 }

 return binarySearch(A, l, r, K)
}

8. Write a function to remove all duplicate characters from a given string.
Note: The duplicate elements are to be removed in such a way that when reading the
string from left to right, the repeated element which occurs later should
be removed.
Input Format
 Input contains a string.
Output Format
 Return a string with non-duplicate
Return a string with non-duplicate characters,
 i.e if you have a string as mettl then output should be metl,

Code
import java.util.*;
class Main
 {
static String removedup(String s)
{
String str="";
for(int i=0;i<s.length();i++)
{
if(str.indexOf(s.charAt(i))==-1)
str+=s.charAt(i);
}
return str;
}
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
String s=sc.nextLine();
System.out.print(removedup(s));
}
}

9. Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M.
Symbol Value
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
For example, 2 is written as II in Roman numeral, just two ones added together. 12 is
written as XII, which is simply X + II. The number 27 is written as XXVII, which is XX +
V + II.
Roman numerals are usually written largest to smallest from left to right. However,
the numeral for four is not IIII. Instead, the number four is written as IV. Because the
one is before the five we subtract it making four. The same principle applies to the
number nine, which is written as IX. There are six instances where subtraction is
used:
I can be placed before V (5) and X (10) to make 4 and 9.
X can be placed before L (50) and C (100) to make 40 and 90.
C can be placed before D (500) and M (1000) to make 400 and 900.
Given a roman numeral, convert it to an integer.

Example 1:
Input: s = "III"
Output: 3
Explanation: III = 3.
Example 2:
Input: s = "LVIII"
Output: 58
Explanation: L = 50, V= 5, III = 3.
Example 3:
Input: s = "MCMXCIV"
Output: 1994
Explanation: M = 1000, CM = 900, XC = 90 and IV = 4.

10.Problem Description -: In this 3 Palindrome, Given an input string word, split the
string into exactly 3 palindromic substrings. Working from left to right, choose the smallest
split for the first substring that still allows the remaining word to be split into 2
palindromes.

Similarly, choose the smallest second palindromic substring that leaves a third palindromic
substring.

If there is no way to split the word into exactly three palindromic substrings, print
“Impossible” (without quotes). Every character of the string needs to be consumed.

Cases not allowed –

• After finding 3 palindromes using above instructions, if any character of the original
string remains unconsumed.

• No character may be shared in forming 3 palindromes.

Constraints

• 1 <= the length of input sting <= 1000

Input

• First line contains the input string consisting of characters between [a-z].

Output

• Print 3 substrings one on each line.

Time Limit

1

Examples

Example 1

Input

nayannamantenet

Output

nayan

naman

tenet

Explanation

• The original string can be split into 3 palindromes as mentioned in the output.
• However, if the input was nayanamantenet, then the answer would be “Impossible”.

Example 2

Input

aaaaa

Output

a

a

aaa

Explanation

• The other ways to split the given string into 3 palindromes are as follows –
• [a, aaa, a], [aaa, a, a], [aa, aa, a], etc.
• Since we want to minimize the length of the first palindromic substring using left to

right processing, the correct way to split is [a, a, aaa].

CPP CODE

#include<bits/stdc++.h>
typedef long long int lld;
#define mod 1000000007
using namespace std;
bool pali(string s)
{
 if(s.length()==1) return true;
 string s1=s;reverse(s1.begin(),s1.end());
 return (s1==s);
}
int main()
{
 speed;
 string s,s1,s2,s3;
 cin>>s;
 int l=s.length();

 for(int i=1;i<l-1;i++)
 {
 s1=s.substr(0,i);
 if(pali(s1))
 for(int j=1;j<l-i;j++)
 {
 s2=s.substr(i,j);s3=s.substr(i+j,l-i-j);
 if(pali(s2)&&pali(s3))
 {
 cout<<s1<<endl<<s2<<endl<<s3;return 0;
 }
 }
 }
 cout<<"Impossible";
 return 0;
}

11.Problem Statement -: In this even odd problem Given a range [low, high] (both
inclusive), select K numbers from the range (a number can be chosen multiple times) such
that sum of those K numbers is even.

Calculate the number of all such permutations.

As this number can be large, print it modulo (1e9 +7).

Constraints

• 0 <= low <= high <= 10^9
• K <= 10^6.

Input

• First line contains two space separated integers denoting low and high respectively
• Second line contains a single integer K.

Output

• Print a single integer denoting the number of all such permutations

Time Limit

1

Examples

Example 1

Input

4 5

3

Output

4

Explanation

There are 4 valid permutations viz. {4, 4, 4}, {4, 5, 5}, {5, 4, 5} and {5, 5, 4} which sum up to
an even number.

Example 2

Input

1 10

2

Output

50

Explanation

There are 50 valid permutations viz. {1,1}, {1, 3},.. {1, 9} {2,2}, {2, 4},… {2, 10} . . . {10, 2}, {10,
4},… {10, 10}. These 50 permutations, each sum up to an even number.

CPP CODE

#include<bits/stdc++.h>
using namespace std;
typedef long long int lld;
#define mod 1000000007
long e_sum(long m,long n,long K,long N)
{
if(K==1)
{
return n;
}
else
{

return (N-(m-n)*e_sum(m,n,K-1,N)%(1000000007));
}
}
int main()
{
long low,high,K,m,n,diff,Out,N,i;
scanf("%ld",&low);
scanf("%ld",&high);
scanf("%ld",&K);
diff=high-low+1;
if(diff%2==0)
{
m=diff/2;
n=m;
}
else
{
if(low%2==0)
{
m=(diff-1)/2;
n=m+1;
}
else
{
m=(diff+1)/2;
n=m-1;
}
}
N=m;
for(i=0;i<K-1;i++)
{
N=(N*(m+n))%1000000007;
}
Out=e_sum(m,n,K,N)%1000000007;
printf("%ld",Out);
return 0;
}

12.Roco is an island near Africa which is very prone to forest fire. Forest fire is such that it
destroys the complete forest. Not a single tree is left.This island has been cursed by God ,
and the curse is that whenever a tree catches fire, it passes the fire to all its adjacent tree in
all 8 directions,North, South, East, West, North-East, North-West, South-East, and South-
West.And it is given that the fire is spreading every minute in the given manner, i.e every

tree is passing fire to its adjacent tree.Suppose that the forest layout is as follows where T
denotes tree and W denotes water.

Your task is that given the location of the first tree that catches fire, determine how long
would it take for the entire forest to be on fire. You may assume that the lay out of the forest
is such that the whole forest will catch fire for sure and that there will be at least one tree in
the forest

Input Format:

• First line contains two integers, M, N, space separated, giving the size of the forest in
terms of the number of rows and columns respectively.

• The next line contains two integers X,Y, space separated, giving the coordinates of the
first tree that catches the fire.

• The next M lines, where ith line containing N characters each of which is either T or
W, giving the position of the Tree and Water in the ith row of the forest.

Output Format:

Single integer indicating the number of minutes taken for the entire forest to catch fire

Constrains:

• 3 ≤ M ≤ 20
• 3 ≤ N ≤ 20

Sample Input 1:

3 3
W T T
T W W
W T T
Sample Output 1:

5

Explanation:
In the second minute,tree at (1,2) catches fire,in the third minute,the tree at (2,1) catches
fire,fourth minute tree at (3,2) catches fire and in the fifth minute the last tree at (3,3)
catches fire.
Sample Input 2:
6 6
1 6
W T T T T T

T W W W W W
W T T T T T
W W W W W T
T T T T T T
T W W W W W

Sample Output 2:

16

CPP CODE

#include <bits/stdc++.h>
using namespace std;
char f[21][21];
int n,m;
struct node{int a,b;};
bool valid(int x,int y) {return (x>=0&&y>=0&&x<n&&y<m);}
bool step(node temp){return (temp.a==-1&&temp.b==-1);}
int main()
{
cin>>n>>m;
int x,y,i,j,count=0;int ans=1;
cin>>x>>y;x--;y--;
for(i=0;i<n;i++)
for(j=0;j<m;j++)
cin>>f[i][j];
f[x][y]='X';

queueq;
node temp;
temp.a=x;temp.b=y;
q.push(temp);
temp.a=-1;temp.b=-1;
q.push(temp);

while(!q.empty())
{
bool flag=false;
while(!step(q.front()))
{
node count=q.front();
if(valid(count.a+1,count.b)&&f[count.a+1][count.b]=='T')//a+1,b
{

if(flag==false){flag=true;ans++;}
f[count.a+1][count.b]='X';
count.a++;
q.push(count);
count.a--;
}
if(valid(count.a+1,count.b+1)&&f[count.a+1][count.b+1]=='T')//a+1,b+1
{
if(flag==false){flag=true;ans++;}
f[count.a+1][count.b+1]='X';
count.a++;count.b++;
q.push(count);
count.a--;count.b--;
}
if(valid(count.a+1,count.b-1)&&f[count.a+1][count.b-1]=='T')//a+1,b-1
{
if(flag==false){flag=true;ans++;}
f[count.a+1][count.b-1]='X';
count.a++;count.b--;
q.push(count);
count.a--;count.b++;
}
if(valid(count.a,count.b+1)&&f[count.a][count.b+1]=='T')//a,b+1
{
if(flag==false){flag=true;ans++;}
f[count.a][count.b+1]='X';
count.b++;
q.push(count);
count.b--;
}
if(valid(count.a,count.b-1)&&f[count.a][count.b-1]=='T')//a,b-1
{
if(flag==false){flag=true;ans++;}
f[count.a][count.b-1]='X';
count.b--;
q.push(count);
count.b++;
}
if(valid(count.a-1,count.b-1)&&f[count.a-1][count.b-1]=='T')//a-1,b-1
{
if(flag==false){flag=true;ans++;}
f[count.a-1][count.b-1]='X';
count.a--;count.b--;
q.push(count);

count.a++;count.b++;
}
if(valid(count.a-1,count.b+1)&&f[count.a-1][count.b+1]=='T')//a-1,b+1
{
if(flag==false){flag=true;ans++;}
f[count.a-1][count.b+1]='X';
count.a--;count.b++;
q.push(count);
count.a++;count.b--;
}
if(valid(count.a-1,count.b)&&f[count.a-1][count.b]=='T')//a-1,b
{
if(flag==false){flag=true;ans++;}
f[count.a-1][count.b]='X';
count.a--;
q.push(count);
count.a++;
}
q.pop();
}
q.pop();
if(!q.empty())
{
temp.a=-1;
temp.b=-1;
q.push(temp);
}

/*
cout<<endl;
for(i=0;i<n;i++)
{for(j=0;j<m;j++)
{cout<<f[i][j]<<" ";}cout<<endl;}
cout<<endl<<endl;
*/
}
cout<<ans;
}

13.Compute the nearest larger number by interchanging its digits updated.Given 2 numbers
a and b find the smallest number greater than b by interchanging the digits of a and if not
possible print -1.

• Input Format
2 numbers a and b, separated by space.

• Output Format
A single number greater than b.

If not possible, print -1

• Constraints

1 <= a,b <= 10000000

Example 1:

Sample Input:

 459 500

Sample Output:
 549

Example 2:

Sample Input:

 645757 457765

Sample Output:
 465577

CPP CODE

#include<bits/stdc++.h>
using namespace std;
int main()
{
string a;
int b,c;
cin>>a>>b;
sort(a.begin(),a.end(),greater());

c=atoi(a.c_str());

if(b>c)
{cout<<-1;

return 0;}
while(b<c)
{
prev_permutation(a.begin(),a.end());
c=atoi(a.c_str());
}
next_permutation(a.begin(),a.end());
cout<<a;
}

14.Problem Statement:- In a Conference ,attendees are invited for a dinner after the
conference.The Co-ordinator,Sagar arranged around round tables for dinner and want to
have an impactful seating experience for the attendees.Before finalizing the seating
arrangement,he wants to analyze all the possible arrangements.These are R round tables
and N attendees.In case where N is an exact multiple of R,the number of attendees must be
exactly N//R,,If N is not an exact multiple of R, then the distribution of attendees must be as
equal as possible.Please refer to the example section before for better understanding.
For example, R = 2 and N = 3
All possible seating arrangements are
(1,2) & (3)
(1,3) & (2)
(2,3) & (1)
Attendees are numbered from 1 to N.

Input Format:

• The first line contains T denoting the number of test cases.
• Each test case contains two space separated integers R and N, Where R denotes the

number of round tables and N denotes the number of attendees.

Output Format:

Single Integer S denoting the number of possible unique arrangements.

Constraints:

• 0 <= R <= 10(Integer)
• 0 < N <= 20 (Integer)

Sample Input 1:
1
2 5
Sample Output 1:

10

Explanation:

R = 2, N = 5

(1,2,3) & (4,5)

(1,2,4) & (3,5)

(1,2,5) & (3,4)

(1,3,4) & (2,5)

(1,3,5) & (2,4)

(1,4,5) & (2,3)

(2,3,4) & (1,5)

(2,3,5) & (1,4)

(2,4,5) & (1,3)

(3,4,5) & (1,2)

Arrangements like

(1,2,3) & (4,5)

(2,1,3) & (4,5)

(2,3,1) & (4,5) etc.

But as it is a round table,all the above arrangements are same.

CPP CODE

#include<bits/stdc++.h>
using namespace std;
typedef long long int ll;
map <ll,ll> dp;
int fac(int n)
{
if(dp[n])
return dp[n];

dp[n]=n*fac(n-1);
return dp[n];
}
int func(int n)
{
if(n<=3)
return 1;
return fac(n-1);
}

int main()
{
dp[0]=dp[1]=1;
int tests;cin>>tests;
while(tests--)
{int R,N,c=1;
cin>>R>>N;
if(N<=R)
{
cout<<1;
continue;
}
int a=N/R,n=N%R;
ll ans=fac(N)/(pow(fac(a),R-n) * pow(fac(a+1),n))/fac(n)/fac(R-n);
for(int i=1;i<=n;i++)
c*=func(a);
for(int i=n+1;i<=R;i++)
c*=func(a-1);

cout<<c*ans;}
}

15. Pangram Checking

Given a string check if it is Pangram or not. A pangram is a sentence containing every letter

in the English Alphabet.

Examples : The quick brown fox jumps over the lazy dog ” is a Pangram [Contains all the

characters from ‘a’ to ‘z’]

“The quick brown fox jumps over the dog” is not a Pangram [Doesn’t contains all the

characters from ‘a’ to ‘z’, as ‘l’, ‘z’, ‘y’ are missing]

We create a mark[] array of Boolean type. We iterate through all the characters of our string

and whenever we see a character we mark it. Lowercase and Uppercase are considered the

same. So ‘A’ and ‘a’ are marked in index 0 and similarly ‘Z’ and ‘z’ are marked in index 25.

After iterating through all the characters we check whether all the characters are marked or

not. If not then return false as this is not a pangram else return true.

 Java CODE

import java.util.*;
public class digital5 {
public static void main(String ars[])
{
Scanner sc=new Scanner(System.in);
System.out.println(“Enter a string “);
String str=sc.nextLine();
String str1=str.toUpperCase();
boolean success = true;
for(char i=’A’;i<='Z';i++)
{
if(!str1.contains(String.valueOf(i)))
{
success=false;
break;
}
}
if(success)
System.out.println("Found all character");
else
System.out.println("Not found all character");
}

}

